Source code for BioSimSpace.Process._somd

#####################################################################
# BioSimSpace: Making biomolecular simulation a breeze!
#
# Copyright: 2017-2024
#
# Authors: Lester Hedges <lester.hedges@gmail.com>
#
# BioSimSpace is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BioSimSpace. If not, see <http://www.gnu.org/licenses/>.
#####################################################################

"""Functionality for running simulations with SOMD."""

__author__ = "Lester Hedges"
__email__ = "lester.hedges@gmail.com"

__all__ = ["Somd"]

from .._Utils import _try_import

_pygtail = _try_import("pygtail")

import glob as _glob
import math as _math
import os as _os
import random as _random
import string as _string
import sys as _sys
import timeit as _timeit
import warnings as _warnings

from sire.legacy import Base as _SireBase
from sire.legacy import CAS as _SireCAS
from sire.legacy import IO as _SireIO
from sire.legacy import MM as _SireMM
from sire.legacy import Mol as _SireMol

from .. import _isVerbose
from .._Config import Somd as _SomdConfig
from .._Exceptions import IncompatibleError as _IncompatibleError
from .._Exceptions import MissingSoftwareError as _MissingSoftwareError
from ..Protocol._free_energy_mixin import _FreeEnergyMixin
from .._SireWrappers import Molecule as _Molecule
from .._SireWrappers import System as _System

from .. import IO as _IO
from .. import Protocol as _Protocol
from .. import Trajectory as _Trajectory
from .. import _Utils

from . import _process


[docs] class Somd(_process.Process): """A class for running simulations using SOMD.""" # Dictionary of platforms and their OpenMM keyword. _platforms = {"CPU": "CPU", "CUDA": "CUDA", "OPENCL": "OpenCL"}
[docs] def __init__( self, system, protocol, exe=None, name="somd", platform="CPU", work_dir=None, seed=None, extra_options={}, extra_lines=[], extra_args={}, property_map={}, **kwargs, ): """ Constructor. Parameters ---------- system : :class:`System <BioSimSpace._SireWrappers.System>` The molecular system. protocol : :class:`Protocol <BioSimSpace.Protocol>` The protocol for the SOMD process. exe : str The full path to the SOMD executable. name : str The name of the process. platform : str The platform for the simulation: "CPU", "CUDA", or "OPENCL". work_dir : The working directory for the process. seed : int A random number seed. Note that SOMD only uses a seed for FreeEnergy protocols. The seed should only be used for debugging purposes since SOMD uses the same seed for each Monte Carlo cycle. extra_options : dict A dictionary containing extra options. Overrides the defaults generated by the protocol. extra_lines : [str] A list of extra lines to put at the end of the configuration file. extra_args : dict A dictionary of extra command-line arguments to pass to the SOMD executable. property_map : dict A dictionary that maps system "properties" to their user defined values. This allows the user to refer to properties with their own naming scheme, e.g. { "charge" : "my-charge" } kwargs : dict Additional keyword arguments. """ # Call the base class constructor. super().__init__( system, protocol, name=name, work_dir=work_dir, seed=seed, extra_options=extra_options, extra_lines=extra_lines, extra_args=extra_args, property_map=property_map, ) # Catch unsupported protocols. if isinstance(protocol, _Protocol.Steering): raise _IncompatibleError( "Unsupported protocol: '%s'" % self._protocol.__class__.__name__ ) # SOMD currently doesn't support FreeEnergyMinimisation or FreeEnergyEquilibration # protocols at intermediate lambda values. Check to see if we're at an end state # and convert the protocol accordingly. if isinstance(protocol, _FreeEnergyMixin): if not isinstance(protocol, _Protocol.FreeEnergyProduction): # Get the lambda value. lam = protocol.getLambda() # Check the end states. # Lambda = 0 (default) if _math.isclose(lam, 0, abs_tol=1e-4): pass # Lambda = 1 (specify via property map) elif _math.isclose(lam, 1, abs_tol=1e-4): self._property_map["is_lambda1"] = _SireBase.wrap(True) # Not supported. else: raise ValueError( f"SOMD cannot execute the 'BioSimSpace.Protocol.{protocol.__class__.__name__}' " f"protocol at the intermediate lambda value of {lam:.4f}. Simulations are only " "possible at the lambda end states, i.e. lambda = 0 or lambda = 1." ) # If we get this far, convert to a regular protocol. self._protocol = protocol._to_regular_protocol() # Set the package name. self._package_name = "SOMD" # This process can generate trajectory data. self._has_trajectory = True if not isinstance(platform, str): raise TypeError("'platform' must be of type 'str'.") else: # Strip all whitespace and convert to upper case. platform = platform.replace(" ", "").upper() # Check for platform support. if platform not in self._platforms: raise ValueError("Supported platforms are: %s" % self._platforms.keys()) else: self._platform = self._platforms[platform] # If the path to the executable wasn't specified, then use the bundled SOMD # executable. if exe is None: # Generate the name of the SOMD exe. if _sys.platform != "win32": somd_path = _SireBase.getBinDir() somd_suffix = "" else: somd_path = _os.path.join( _os.path.normpath(_SireBase.getShareDir()), "scripts" ) somd_interpreter = _os.path.join( _os.path.normpath(_SireBase.getBinDir()), "sire_python.exe" ) somd_suffix = ".py" if isinstance(self._protocol, _Protocol.FreeEnergy): somd_exe = "somd-freenrg" else: somd_exe = "somd" somd_exe = _os.path.join(somd_path, somd_exe) + somd_suffix if not _os.path.isfile(somd_exe): raise _MissingSoftwareError( "'Cannot find SOMD executable in expected location: '%s'" % somd_exe ) if _sys.platform != "win32": self._exe = somd_exe else: self._exe = somd_interpreter self._script = somd_exe else: # Make sure executable exists. if _os.path.isfile(exe): self._exe = exe else: raise IOError("SOMD executable doesn't exist: '%s'" % exe) # Validate torsion modification kwargs. self._zero_dummy_dihedrals = kwargs.get("zero_dummy_dihedrals", False) if not isinstance(self._zero_dummy_dihedrals, bool): self._zero_dummy_dihedrals = False self._zero_dummy_impropers = kwargs.get("zero_dummy_impropers", False) if not isinstance(self._zero_dummy_impropers, bool): self._zero_dummy_impropers = False # The names of the input files. self._rst_file = _os.path.join(str(self._work_dir), f"{name}.rst7") self._top_file = _os.path.join(str(self._work_dir), f"{name}.prm7") # The name of the trajectory file. self._traj_file = _os.path.join(str(self._work_dir), "traj000000001.dcd") # The name of the restart file. self._restart_file = _os.path.join(str(self._work_dir), "latest.pdb") # Set the path for the SOMD configuration file. self._config_file = _os.path.join(str(self._work_dir), f"{name}.cfg") # Set the path for the perturbation file. self._pert_file = _os.path.join(str(self._work_dir), f"{name}.pert") # Set the path for the gradient file and create the gradient list. self._gradient_file = _os.path.join(str(self._work_dir), "gradients.dat") self._gradients = [] # Create the list of input files. self._input_files = [self._config_file, self._rst_file, self._top_file] # Initialise the number of moves per cycle. self._num_moves = 10000 # Initialise the buffering frequency. self._buffer_freq = 0 # Initialise the molecule index mapping. SOMD re-orders molecules on # startup so we need to re-map to the original system. self._mapping = {} # Now set up the working directory for the process. self._setup()
def __str__(self): """Return a human readable string representation of the object.""" return ( "<BioSimSpace.Process.%s: system=%s, protocol=%s, exe='%s', name='%s', platform='%s', work_dir='%s' seed=%s>" % ( self.__class__.__name__, str(self._system), self._protocol.__repr__(), self._exe + ("%s " % self._script if self._script else ""), self._name, self._platform, self._work_dir, self._seed, ) ) def __repr__(self): """Return a string showing how to instantiate the object.""" return ( "BioSimSpace.Process.%s(%s, %s, exe='%s', name='%s', platform='%s', work_dir='%s', seed=%s)" % ( self.__class__.__name__, str(self._system), self._protocol.__repr__(), self._exe + ("%s " % self._script if self._script else ""), self._name, self._platform, self._work_dir, self._seed, ) ) def _setup(self): """Setup the input files and working directory ready for simulation.""" # Create the input files... # First create a copy of the system. system = self._system.copy() # Renumber all of the constituents in the system so that they are unique # and in ascending order. This is required since SOMD assumes that numbers # are unique, i.e. the residue number of the perturbed molecule. # We store the renumbered system to use as a template when mapping atoms # the those from the extracted trajectory frames in, e.g. getSystem(). self._renumbered_system = _SireIO.renumberConstituents(system._sire_object) system = _System(self._renumbered_system) # If the we are performing a free energy simulation, then check that # the system contains a single perturbable molecule. If so, then create # and write a perturbation file to the work directory. if isinstance(self._protocol, _Protocol.FreeEnergy): if system.nPerturbableMolecules() == 1: # Extract the perturbable molecule. pert_mol = system.getPerturbableMolecules()[0] # Write the perturbation file and get the molecule corresponding # to the lambda = 0 state. pert_mol = _to_pert_file( pert_mol, filename=self._pert_file, zero_dummy_dihedrals=self._zero_dummy_dihedrals, zero_dummy_impropers=self._zero_dummy_impropers, property_map=self._property_map, perturbation_type=self._protocol.getPerturbationType(), ) self._input_files.append(self._pert_file) # Remove the perturbable molecule. system.updateMolecules(pert_mol) else: raise ValueError( "'BioSimSpace.Protocol.FreeEnergy' requires a single " "perturbable molecule. The system has %d." % system.nPerturbableMolecules() ) # If this is a different protocol and the system still contains a # perturbable molecule, then we'll warn the user and simulate the # lambda = 0 state. else: system = self._checkPerturbable(system) # Convert the water model topology so that it matches the AMBER naming convention. system._set_water_topology("AMBER", property_map=self._property_map) # RST file (coordinates). try: file = _os.path.splitext(self._rst_file)[0] _IO.saveMolecules(file, system, "rst7", property_map=self._property_map) except Exception as e: msg = "Failed to write system to 'RST7' format." if _isVerbose(): raise IOError(msg) from e else: raise IOError(msg) from None # PRM file (topology). try: _IO.saveMolecules( file, system, "prm7", match_water=False, property_map=self._property_map ) except Exception as e: msg = "Failed to write system to 'PRM7' format." if _isVerbose(): raise IOError(msg) from e else: raise IOError(msg) from None # Warn the user if the simulation is seeded and not running a FreeEnergy # protocol. if self._is_seeded: if not isinstance(self._protocol, _Protocol.FreeEnergy): _warnings.warn( "Debug seeding is only supported for FreeEnergy protocols. Ignoring!" ) self._is_seeded = False else: _warnings.warn( "Seeding should only be used for debugging purposes. " "Sampling will be invalid." ) if self._seed == 0: _warnings.warn("SOMD will disable seeding when seed is 0!") # Generate the SOMD configuration file. # Skip if the user has passed a custom config. if isinstance(self._protocol, _Protocol.Custom): self.setConfig(self._protocol.getConfig()) else: self._generate_config() self.writeConfig(self._config_file) # Generate the dictionary of command-line arguments. self._generate_args() # Return the list of input files. return self._input_files def _generate_config(self): """Generate SOMD configuration file strings.""" # Check whether the system contains periodic box information. # For now, well not attempt to generate a box if the system property # is missing. If no box is present, we'll assume a non-periodic simulation. if "space" in self._system._sire_object.propertyKeys(): has_box = True else: _warnings.warn("No simulation box found. Assuming gas phase simulation.") has_box = False config_options = {} if isinstance(self._protocol, _Protocol.FreeEnergy): # Set the debugging seed. if self._is_seeded: config_options["debug seed"] = seed if self._platform == "CUDA" or self._platform == "OPENCL": # Here the "gpu" option is the index into the CUDA_VISIBLE_DEVICES or # OPENCL_VISIBLE_DEVICES environment variable array, not the index of # the device itself. Unless the user overrides this, we'll use the first # available device. Multi-gpu support isn't considered. config_options["gpu"] = 0 # Warn the user if they have requested at GPU platform but haven't set the # appropriate environment variable. OpenMM won't run if this is case. if self._platform == "CUDA" and "CUDA_VISIBLE_DEVICES" not in _os.environ: _warnings.warn( "'CUDA' platform selected but 'CUDA_VISIBLE_DEVICES' " "environment variable is unset." ) elif ( self._platform == "OPENCL" and "OPENCL_VISIBLE_DEVICES" not in _os.environ ): _warnings.warn( "'OpenCL' platform selected but 'OPENCL_VISIBLE_DEVICES' " "environment variable is unset." ) # Create and set the configuration. somd_config = _SomdConfig(_System(self._renumbered_system), self._protocol) self.setConfig( somd_config.createConfig( extra_options={**config_options, **self._extra_options}, extra_lines=self._extra_lines, ) ) # Flag that this isn't a custom protocol. self._protocol._setCustomised(False) def _generate_args(self): """Generate the dictionary of command-line arguments.""" # Clear the existing arguments. self.clearArgs() # Add the default arguments. self.setArg("-c", "%s.rst7" % self._name) # Coordinate restart file. self.setArg("-t", "%s.prm7" % self._name) # Topology file. if isinstance(self._protocol, _Protocol.FreeEnergy): self.setArg("-m", "%s.pert" % self._name) # Perturbation file. self.setArg("-C", "%s.cfg" % self._name) # Config file. self.setArg("-p", self._platform) # Simulation platform. # Add the extra arguments. for key, value in self._extra_args.items(): self.setArg(key, value)
[docs] def start(self): """ Start the SOMD process. Returns ------- process : :class:`Process.Somd <BioSimSpace.Process.Somd>` A handle to the running process. """ # The process is currently queued. if self.isQueued(): return # Process is already running. if self._process is not None: if self._process.isRunning(): return # Clear any existing output. self._clear_output() # Run the process in the working directory. with _Utils.cd(self._work_dir): # Create the arguments string list. args = self.getArgStringList() # Write the command-line process to a README.txt file. with open("README.txt", "w") as f: # Set the command-line string. self._command = "%s " % self._exe + self.getArgString() # Write the command to file. f.write("# SOMD was run with the following command:\n") f.write("%s\n" % self._command) # Start the timer. self._timer = _timeit.default_timer() # Start the simulation. self._process = _SireBase.Process.run( self._exe, args, "%s.out" % self._name, "%s.out" % self._name ) # SOMD uses the stdout stream for all output. with open(_os.path.basename(self._stderr_file), "w") as f: f.write("All output has been redirected to the stdout stream!\n") return self
[docs] def getSystem(self, block="AUTO"): """ Get the latest molecular system. Parameters ---------- block : bool Whether to block until the process has finished running. Returns ------- system : :class:`System <BioSimSpace._SireWrappers.System>` The latest molecular system. """ # Wait for the process to finish. if block is True: self.wait() elif block == "AUTO" and self._is_blocked: self.wait() # Warn the user if the process has exited with an error. if self.isError(): _warnings.warn("The process exited with an error!") # Try to grab the latest coordinates from the binary restart file. try: # Do we need to get coordinates for the lambda=1 state. if "is_lambda1" in self._property_map: is_lambda1 = True else: is_lambda1 = False new_system = _IO.readMolecules(self._restart_file) # Try loading the trajectory file to get the box information. try: frame = self.getTrajectory().getFrames(-1) box = frame._sire_object.property("space") except: box = None # Since SOMD requires specific residue and water naming we copy the # coordinates back into the original system. old_system = self._system.copy() # Update the coordinates and velocities and return a mapping between # the molecule indices in the two systems. sire_system, mapping = _SireIO.updateCoordinatesAndVelocities( old_system._sire_object, self._renumbered_system, new_system._sire_object, self._mapping, is_lambda1, self._property_map, self._property_map, ) # Update the underlying Sire object. old_system._sire_object = sire_system # Store the mapping between the MolIdx in both systems so we don't # need to recompute it next time. self._mapping = mapping # Update the box information in the original system. if box and box.isPeriodic(): old_system._sire_object.setProperty( self._property_map.get("space", "space"), box ) return old_system except: return None
[docs] def getCurrentSystem(self): """ Get the latest molecular system. Returns ------- system : :class:`System <BioSimSpace._SireWrappers.System>` The latest molecular system. """ return self.getSystem(block=False)
[docs] def getTrajectory(self, backend="AUTO", block="AUTO"): """ Return a trajectory object. Parameters ---------- backend : str The backend to use for trajectory parsing. To see supported backends, run BioSimSpace.Trajectory.backends(). Using "AUTO" will try each in sequence. block : bool Whether to block until the process has finished running. Returns ------- trajectory : :class:`Trajectory <BioSimSpace.Trajectory.trajectory>` The latest trajectory object. """ if not isinstance(backend, str): raise TypeError("'backend' must be of type 'str'") if not isinstance(block, (bool, str)): raise TypeError("'block' must be of type 'bool' or 'str'") # Wait for the process to finish. if block is True: self.wait() elif block == "AUTO" and self._is_blocked: self.wait() # Warn the user if the process has exited with an error. if self.isError(): _warnings.warn("The process exited with an error!") try: return _Trajectory.Trajectory(process=self, backend=backend) except: return None
[docs] def getFrame(self, index): """ Return a specific trajectory frame. Parameters ---------- index : int The index of the frame. Returns ------- frame : :class:`System <BioSimSpace._SireWrappers.System>` The System object of the corresponding frame. """ if not type(index) is int: raise TypeError("'index' must be of type 'int'") max_index = ( int( (self._protocol.getRunTime() / self._protocol.getTimeStep()) / self._protocol.getRestartInterval() ) - 1 ) if index < 0 or index > max_index: raise ValueError(f"'index' must be in range [0, {max_index}].") try: # Do we need to get coordinates for the lambda=1 state. if "is_lambda1" in self._property_map: is_lambda1 = True else: is_lambda1 = False new_system = _Trajectory.getFrame(self._traj_file, self._top_file, index) # Copy the new coordinates back into the original system. old_system = self._system.copy() # Update the coordinates and velocities and return a mapping between # the molecule numbers in the two systems. sire_system, mapping = _SireIO.updateCoordinatesAndVelocities( old_system._sire_object, self._renumbered_system, new_system._sire_object, self._mapping, is_lambda1, self._property_map, self._property_map, ) # Update the underlying Sire object. old_system._sire_object = sire_system # Store the mapping between the MolIdx in both systems so we don't # need to recompute it next time. self._mapping = mapping # Update the box information in the original system. if "space" in new_system._sire_object.propertyKeys(): box = new_system._sire_object.property("space") old_system._sire_object.setProperty( self._property_map.get("space", "space"), box ) return old_system except: return None
[docs] def getTime(self, time_series=False, block="AUTO"): """ Get the time (in nanoseconds). Parameters ---------- time_series : bool Whether to return a list of time series records. block : bool Whether to block until the process has finished running. Returns ------- time : :class:`Time <BioSimSpace.Types.Time>` The current simulation time in nanoseconds. """ # Warn the user if the process has exited with an error. if self.isError(): _warnings.warn("The process exited with an error!") # No time records for minimisation protocols. if isinstance(self._protocol, _Protocol.Minimisation): return None # Get the number of trajectory frames. num_frames = self.getTrajectory(block=block).nFrames() if num_frames == 0: return None try: # Create the list of time records. times = [ ( self._protocol.getRestartInterval() * self._protocol.getTimeStep().to_default_unit() ) * x for x in range(1, num_frames + 1) ] except: return None if time_series: return times else: return times[-1]
[docs] def getCurrentTime(self, time_series=False): """ Get the current time (in nanoseconds). Parameters ---------- time_series : bool Whether to return a list of time series records. Returns ------- time : :class:`Time <BioSimSpace.Types.Time>` The current simulation time in nanoseconds. """ return self.getTime(time_series, block=False)
[docs] def getGradient(self, time_series=False, block="AUTO"): """ Get the free energy gradient. Parameters ---------- time_series : bool Whether to return a list of time series records. block : bool Whether to block until the process has finished running. Returns ------- gradient : float The free energy gradient. """ # Wait for the process to finish. if block is True: self.wait() elif block == "AUTO" and self._is_blocked: self.wait() # Warn the user if the process has exited with an error. if self.isError(): _warnings.warn("The process exited with an error!") # No gradient file. if not _os.path.isfile(self._gradient_file): return None # Append any new lines to the gradients list. for line in _pygtail.Pygtail(self._gradient_file): # Ignore comments. if line[0] != "#": self._gradients.append(float(line.rstrip().split()[-1])) if len(self._gradients) == 0: return None if time_series: return self._gradients else: return self._gradients[-1]
[docs] def getCurrentGradient(self, time_series=False): """ Get the current free energy gradient. Parameters ---------- time_series : bool Whether to return a list of time series records. Returns ------- gradient : float The current free energy gradient. """ return self.getGradient(time_series, block=False)
def _clear_output(self): """Reset stdout and stderr.""" # Call the base class method. super()._clear_output() # Delete any restart and trajectory files in the working directory. file = _os.path.join(str(self._work_dir), "sim_restart.s3") if _os.path.isfile(file): _os.remove(file) file = _os.path.join(str(self._work_dir), "SYSTEM.s3") if _os.path.isfile(file): _os.remove(file) files = _glob.glob(_os.path.join(str(self._work_dir), "traj*.dcd")) for file in files: if _os.path.isfile(file): _os.remove(file) # Additional files for free energy simulations. if isinstance(self._protocol, _Protocol.FreeEnergy): file = _os.path.join(str(self._work_dir), "gradients.dat") if _os.path.isfile(file): _os.remove(file) file = _os.path.join(str(self._work_dir), "simfile.dat") if _os.path.isfile(file): _os.remove(file)
def _to_pert_file( molecule, filename="MORPH.pert", zero_dummy_dihedrals=False, zero_dummy_impropers=False, print_all_atoms=False, property_map={}, perturbation_type="full", ): """ Write a perturbation file for a perturbable molecule. Parameters ---------- molecule : :class:`System <BioSimSpace._SireWrappers.Molecule>` The perturbable molecule. filename : str The name of the perturbation file. zero_dummy_dihedrals : bool Whether to zero the barrier height for dihedrals involving dummy atoms. zero_dummy_impropers : bool Whether to zero the barrier height for impropers involving dummy atoms. print_all_atoms : bool Whether to print all atom records to the pert file, not just the atoms that are perturbed. property_map : dict A dictionary that maps system "properties" to their user defined values. This allows the user to refer to properties with their own naming scheme, e.g. { "charge" : "my-charge" } perturbation_type : str The type of perturbation to perform. Options are: "full" : A full perturbation of all terms (default option). "discharge_soft" : Perturb all discharging soft atom charge terms (i.e. value->0.0). "vanish_soft" : Perturb all vanishing soft atom LJ terms (i.e. value->0.0). "flip" : Perturb all hard atom terms as well as bonds/angles. "grow_soft" : Perturb all growing soft atom LJ terms (i.e. 0.0->value). "charge_soft" : Perturb all charging soft atom LJ terms (i.e. 0.0->value). Returns ------- molecule : :class:`System <BioSimSpace._SireWrappers.Molecule>` The molecule with properties corresponding to the lamda = 0 state. """ if not isinstance(molecule, _Molecule): raise TypeError( "'molecule' must be of type 'BioSimSpace._SireWrappers.Molecule'" ) if not molecule._is_perturbable: raise _IncompatibleError( "'molecule' isn't perturbable. Cannot write perturbation file!" ) if not molecule._sire_object.property("forcefield0").isAmberStyle(): raise _IncompatibleError( "Can only write perturbation files for AMBER style force fields." ) if not isinstance(zero_dummy_dihedrals, bool): raise TypeError("'zero_dummy_dihedrals' must be of type 'bool'") if not isinstance(zero_dummy_impropers, bool): raise TypeError("'zero_dummy_impropers' must be of type 'bool'") if not isinstance(print_all_atoms, bool): raise TypeError("'print_all_atoms' must be of type 'bool'") if not isinstance(property_map, dict): raise TypeError("'property_map' must be of type 'dict'") if not isinstance(perturbation_type, str): raise TypeError("'perturbation_type' must be of type 'str'") # Convert to lower case and strip whitespace. perturbation_type = perturbation_type.lower().replace(" ", "") allowed_perturbation_types = [ "full", "discharge_soft", "vanish_soft", "flip", "grow_soft", "charge_soft", ] if perturbation_type not in allowed_perturbation_types: raise ValueError( f"'perturbation_type' must be one of: {allowed_perturbation_types}" ) # Seed the random number generator so that we get reproducible atom names. # This is helpful when debugging since we can directly compare pert files. _random.seed(42) # Extract and copy the Sire molecule. mol = molecule._sire_object.__deepcopy__() # First work out the indices of atoms that are perturbed. pert_idxs = [] # Perturbed atoms change one of the following properties: # "ambertype", "LJ", or "charge". for atom in mol.atoms(): if ( atom.property("ambertype0") != atom.property("ambertype1") or atom.property("LJ0") != atom.property("LJ1") or atom.property("charge0") != atom.property("charge1") ): pert_idxs.append(atom.index()) # The pert file uses atom names for identification purposes. This means # that the names must be unique. As such we need to count the number of # atoms with a particular name, then append an index to their name. # Loop over all atoms in the molecule and tally the occurrence of each # name. atom_names = {} for atom in mol.atoms(): atom_names[atom.name()] = atom_names.get(atom.name(), 1) + 1 # Create a set from the atoms names seen so far. names = set(atom_names.keys()) # If there are duplicate names, then we need to rename the atoms. if sum(atom_names.values()) > len(names): # Make the molecule editable. edit_mol = mol.edit() # Create a dictionary to flag whether we've seen each atom name. is_seen = {name: False for name in names} # Tally counter for the number of dummy atoms. num_dummy = 1 # Loop over all atoms. for atom in mol.atoms(): # Store the original atom. name = atom.name() # If this is a dummy atom, then rename it as "DU##", where ## is a # two-digit number padded with a leading zero. if atom.property("element0") == _SireMol.Element("X"): # Create the new atom name. new_name = "DU%02d" % num_dummy # Convert to an AtomName and rename the atom. new_name = _SireMol.AtomName(new_name) edit_mol = edit_mol.atom(atom.index()).rename(new_name).molecule() # Update the number of dummy atoms that have been named. num_dummy += 1 # Since ligands typically have less than 100 atoms, the following # exception shouldn't be triggered. We can't support perturbations # with 100 or more dummy atoms in the lambda = 0 state because of # AMBER fixed width atom naming restrictions (4 character width). # We could give dummies a unique name in the same way that non-dummy # atoms are handled (see else) block below, but instead we'll raise # an exception. if num_dummy == 100: raise RuntimeError("Dummy atom naming limit exceeded! (100 atoms)") # Append to the list of seen names. names.add(new_name) else: # There is more than one atom with this name, and this is the second # time we've come across it. if atom_names[name] > 1 and is_seen[name]: # Create the base of the new name. new_name = name.value() # Create a random suffix. suffix = _random_suffix(new_name) # Zero the number of attempted renamings. num_attempts = 0 # If this name already exists, keep trying until we get a unique name. while new_name + suffix in names: suffix = _random_suffix(new_name) num_attempts += 1 # Abort if we've tried more than 100 times. if num_attempts == 100: raise RuntimeError( "Error while writing SOMD pert file. " "Unable to generate a unique suffix for " "atom name: '%s'" % new_name ) # Append the suffix to the name and store in the set of seen names. new_name = new_name + suffix names.add(new_name) # Convert to an AtomName and rename the atom. new_name = _SireMol.AtomName(new_name) edit_mol = edit_mol.atom(atom.index()).rename(new_name).molecule() # Record that we've seen this atom name. is_seen[name] = True # Store the updated molecule. mol = edit_mol.commit() # Now write the perturbation file. with open(filename, "w") as file: # Get the info object for the molecule. info = mol.info() # Write the version header. file.write("version 1\n") # Start molecule record. file.write("molecule LIG\n") if print_all_atoms: raise NotImplementedError( "print_all_atoms is not allowed during dev of multistep protocol." ) # 1) Atoms. # Store a null LJParameter object for dummy atoms. SOMD requires that # both sigma and epsilon are set to zero for dummy atoms. dummy_lj = _SireMM.LJParameter() def atom_sorting_criteria(atom): LJ0 = atom.property("LJ0") LJ1 = atom.property("LJ1") return ( atom.name().value(), atom.property("ambertype0"), atom.property("ambertype1"), LJ0.sigma().value(), LJ1.sigma().value(), LJ0.epsilon().value(), LJ1.epsilon().value(), atom.property("charge0").value(), atom.property("charge1").value(), ) if perturbation_type == "full": if print_all_atoms: for atom in sorted( mol.atoms(), key=lambda atom: atom_sorting_criteria(atom) ): # Start atom record. file.write(" atom\n") # Get the initial/final Lennard-Jones properties. LJ0 = atom.property("LJ0") LJ1 = atom.property("LJ1") # Dummy atom at lambda = 0. if _is_dummy(mol, atom.index(), is_lambda1=False): LJ0 = dummy_lj # Dummy atom at lambda = 1. if _is_dummy(mol, atom.index(), is_lambda1=True): LJ1 = dummy_lj # Atom data. file.write(" name %s\n" % atom.name().value()) file.write( " initial_type %s\n" % atom.property("ambertype0") ) file.write( " final_type %s\n" % atom.property("ambertype1") ) file.write( " initial_LJ %.5f %.5f\n" % (LJ0.sigma().value(), LJ0.epsilon().value()) ) file.write( " final_LJ %.5f %.5f\n" % (LJ1.sigma().value(), LJ1.epsilon().value()) ) file.write( " initial_charge %.5f\n" % atom.property("charge0").value() ) file.write( " final_charge %.5f\n" % atom.property("charge1").value() ) # End atom record. file.write(" endatom\n") # Only print records for the atoms that are perturbed. else: for idx in sorted( pert_idxs, key=lambda idx: atom_sorting_criteria(mol.atom(idx)) ): # Get the perturbed atom. atom = mol.atom(idx) # Start atom record. file.write(" atom\n") # Get the initial/final Lennard-Jones properties. LJ0 = atom.property("LJ0") LJ1 = atom.property("LJ1") # Dummy atom at lambda = 0. if _is_dummy(mol, idx, is_lambda1=False): LJ0 = dummy_lj # Dummy atom at lambda = 1. if _is_dummy(mol, idx, is_lambda1=True): LJ1 = dummy_lj # Atom data. file.write(" name %s\n" % atom.name().value()) file.write( " initial_type %s\n" % atom.property("ambertype0") ) file.write( " final_type %s\n" % atom.property("ambertype1") ) file.write( " initial_LJ %.5f %.5f\n" % (LJ0.sigma().value(), LJ0.epsilon().value()) ) file.write( " final_LJ %.5f %.5f\n" % (LJ1.sigma().value(), LJ1.epsilon().value()) ) file.write( " initial_charge %.5f\n" % atom.property("charge0").value() ) file.write( " final_charge %.5f\n" % atom.property("charge1").value() ) # End atom record. file.write(" endatom\n") else: # Given multistep protocol: if print_all_atoms: raise NotImplementedError( "print_all_atoms in multistep approach is not yet implemented." ) for idx in sorted( pert_idxs, key=lambda idx: atom_sorting_criteria(mol.atom(idx)) ): # Get the perturbed atom. atom = mol.atom(idx) # Start atom record. file.write(" atom\n") # Get the initial/final Lennard-Jones properties. LJ0 = atom.property("LJ0") LJ1 = atom.property("LJ1") # Atom data. # Get the atom types: atom_type0 = atom.property("ambertype0") atom_type1 = atom.property("ambertype1") # Set LJ/charge based on requested perturbed term. if perturbation_type == "discharge_soft": if _is_dummy(mol, idx, is_lambda1=False) or _is_dummy( mol, idx, is_lambda1=True ): # If perturbing TO dummy: if is_dummy(mol, idx, is_lambda1=True): atom_type1 = atom_type0 # In this step, only remove charges from soft-core perturbations. LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = atom.property("charge0").value() charge1_value = -0.0 # If perturbing FROM dummy: else: # All terms have already been perturbed in "grow_soft". atom_type1 = atom_type0 LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = charge1_value = atom.property( "charge0" ).value() else: # If only hard atoms in perturbation, hold parameters. atom_type1 = atom_type0 LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = charge1_value = atom.property("charge0").value() elif perturbation_type == "vanish_soft": if _is_dummy(mol, idx, is_lambda1=False) or _is_dummy( mol, idx, is_lambda1=True ): # If perturbing TO dummy: if _is_dummy(mol, idx, is_lambda1=True): # allow atom types to change. atom_type0 = atom_type0 atom_type1 = atom_type1 # In this step, only remove LJ from soft-core perturbations. LJ0_value = LJ0.sigma().value(), LJ0.epsilon().value() LJ1_value = (0.0, 0.0) # soft discharge was previous step, so assume 0.0. charge0_value = charge1_value = -0.0 # If perturbing FROM dummy: else: # All terms have already been perturbed in "grow_soft". atom_type1 = atom_type0 LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = charge1_value = atom.property( "charge0" ).value() else: # If only hard atoms in perturbation, hold parameters. atom_type1 = atom_type0 LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = charge1_value = atom.property("charge0").value() elif perturbation_type == "flip": if _is_dummy(mol, idx, is_lambda1=False) or _is_dummy( mol, idx, is_lambda1=True ): # If perturbing TO dummy: if _is_dummy(mol, idx, is_lambda1=True): # atom types have already been changed. atom_type0 = atom_type1 # In previous steps, soft-core transformations were discharged and vanished. LJ0_value = LJ1_value = (0.0, 0.0) charge0_value = charge1_value = -0.0 # If perturbing FROM dummy: else: # All terms have already been perturbed in "grow_soft". atom_type1 = atom_type0 LJ0_value = LJ1_value = ( LJ0.sigma().value(), LJ0.epsilon().value(), ) charge0_value = charge1_value = atom.property( "charge0" ).value() else: # If only hard atoms in perturbation, change all parameters. atom_type1 = atom_type1 atom_type0 = atom_type0 LJ0_value = LJ0.sigma().value(), LJ0.epsilon().value() LJ1_value = LJ1.sigma().value(), LJ1.epsilon().value() charge0_value = atom.property("charge0").value() charge1_value = atom.property("charge1").value() elif perturbation_type == "grow_soft": if _is_dummy(mol, idx, is_lambda1=False) or _is_dummy( mol, idx, is_lambda1=True ): # If perturbing TO dummy: if _is_dummy(mol, idx, is_lambda1=True): # atom types have already been changed. atom_type0 = atom_type1 # In previous steps, soft-core transformations were discharged and vanished. LJ0_value = LJ1_value = (0.0, 0.0) charge0_value = charge1_value = -0.0 # If perturbing FROM dummy: else: # if perturbing FROM dummy, i.e. element0 is dummy, perturb. # allow atom types to change. atom_type0 = atom_type0 atom_type1 = atom_type1 # In this step, soft-core perturbations are grown from 0. LJ0_value = LJ0.sigma().value(), LJ0.epsilon().value() LJ1_value = LJ1.sigma().value(), LJ1.epsilon().value() charge0_value = charge1_value = atom.property( "charge0" ).value() else: # If only hard atoms in perturbation, parameters are already changed. atom_type0 = atom_type1 LJ0_value = LJ1_value = ( LJ1.sigma().value(), LJ1.epsilon().value(), ) charge0_value = charge1_value = atom.property("charge1").value() elif perturbation_type == "charge_soft": if _is_dummy(mol, idx, is_lambda1=False) or _is_dummy( mol, idx, is_lambda1=True ): # If perturbing TO dummy: if _is_dummy(mol, idx, is_lambda1=True): # atom types have already been changed. atom_type0 = atom_type1 # In previous steps, soft-core transformations were discharged and vanished. LJ0_value = LJ1_value = (0.0, 0.0) charge0_value = charge1_value = -0.0 # If perturbing FROM dummy: else: # if perturbing FROM dummy, i.e. element0 is dummy, perturb. # atom types is already changed: atom_type0 = atom_type1 # In this step, soft-core perturbations are charged from 0. LJ0_value = LJ1_value = ( LJ1.sigma().value(), LJ1.epsilon().value(), ) charge0_value = atom.property("charge0").value() charge1_value = atom.property("charge1").value() else: # If only hard atoms in perturbation, parameters are already changed. atom_type0 = atom_type1 LJ0_value = LJ1_value = ( LJ1.sigma().value(), LJ1.epsilon().value(), ) charge0_value = charge1_value = atom.property("charge1").value() # Write atom data. file.write(" name %s\n" % atom.name().value()) file.write(" initial_type %s\n" % atom_type0) file.write(" final_type %s\n" % atom_type1) file.write(" initial_LJ %.5f %.5f\n" % (LJ0_value)) file.write(" final_LJ %.5f %.5f\n" % (LJ1_value)) file.write(" initial_charge %.5f\n" % charge0_value) file.write(" final_charge %.5f\n" % charge1_value) # End atom record. file.write(" endatom\n") # 2) Bonds. # Extract the bonds at lambda = 0 and 1. bonds0 = mol.property("bond0").potentials() bonds1 = mol.property("bond1").potentials() # Dictionaries to store the BondIDs at lambda = 0 and 1. bonds0_idx = {} bonds1_idx = {} # Loop over all bonds at lambda = 0. for idx, bond in enumerate(bonds0): # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond.atom0()) idx1 = info.atomIdx(bond.atom1()) # Create the BondID. bond_id = _SireMol.BondID(idx0, idx1) # Add to the list of ids. bonds0_idx[bond_id] = idx # Loop over all bonds at lambda = 1. for idx, bond in enumerate(bonds1): # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond.atom0()) idx1 = info.atomIdx(bond.atom1()) # Create the BondID. bond_id = _SireMol.BondID(idx0, idx1) # Add to the list of ids. if bond_id.mirror() in bonds0_idx: bonds1_idx[bond_id.mirror()] = idx else: bonds1_idx[bond_id] = idx # Now work out the BondIDs that are unique at lambda = 0 and 1 # as well as those that are shared. bonds0_unique_idx = {} bonds1_unique_idx = {} bonds_shared_idx = {} # lambda = 0. for idx in bonds0_idx.keys(): if idx not in bonds1_idx.keys(): bonds0_unique_idx[idx] = bonds0_idx[idx] else: bonds_shared_idx[idx] = (bonds0_idx[idx], bonds1_idx[idx]) # lambda = 1. for idx in bonds1_idx.keys(): if idx not in bonds0_idx.keys(): bonds1_unique_idx[idx] = bonds1_idx[idx] elif idx not in bonds_shared_idx.keys(): bonds_shared_idx[idx] = (bonds0_idx[idx], bonds1_idx[idx]) # First create records for the bonds that are unique to lambda = 0 and 1. def sort_bonds(bonds, idx): # Get the bond potential. bond = bonds[idx] # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond.atom0()) idx1 = info.atomIdx(bond.atom1()) return (mol.atom(idx0).name().value(), mol.atom(idx1).name().value()) # lambda = 0. for idx in sorted( bonds0_unique_idx.values(), key=lambda idx: sort_bonds(bonds0, idx) ): # Get the bond potential. bond = bonds0[idx] # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond.atom0()) idx1 = info.atomIdx(bond.atom1()) # Cast the function as an AmberBond. amber_bond = _SireMM.AmberBond(bond.function(), _SireCAS.Symbol("r")) # Start bond record. file.write(" bond\n") # Bond data. file.write(" atom0 %s\n" % mol.atom(idx0).name().value()) file.write(" atom1 %s\n" % mol.atom(idx1).name().value()) file.write(" initial_force %.5f\n" % amber_bond.k()) file.write(" initial_equil %.5f\n" % amber_bond.r0()) file.write(" final_force %.5f\n" % 0.0) file.write(" final_equil %.5f\n" % amber_bond.r0()) # End bond record. file.write(" endbond\n") # lambda = 1. for idx in sorted( bonds1_unique_idx.values(), key=lambda idx: sort_bonds(bonds1, idx) ): # Get the bond potential. bond = bonds1[idx] # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond.atom0()) idx1 = info.atomIdx(bond.atom1()) # Cast the function as an AmberBond. amber_bond = _SireMM.AmberBond(bond.function(), _SireCAS.Symbol("r")) # Start bond record. file.write(" bond\n") if perturbation_type in ["discharge_soft", "vanish_soft"]: # Bond data is unchanged. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % 0.0) file.write(" initial_equil %.5f\n" % amber_bond.r0()) file.write(" final_force %.5f\n" % 0.0) file.write(" final_equil %.5f\n" % amber_bond.r0()) elif perturbation_type in ["flip", "full"]: # Bonds are perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % 0.0) file.write(" initial_equil %.5f\n" % amber_bond.r0()) file.write(" final_force %.5f\n" % amber_bond.k()) file.write(" final_equil %.5f\n" % amber_bond.r0()) elif perturbation_type in ["grow_soft", "charge_soft"]: # Bond data has already been changed, assume endpoints. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % amber_bond.k()) file.write(" initial_equil %.5f\n" % amber_bond.r0()) file.write(" final_force %.5f\n" % amber_bond.k()) file.write(" final_equil %.5f\n" % amber_bond.r0()) # End bond record. file.write(" endbond\n") # Now add records for the shared bonds. for idx0, idx1 in sorted( bonds_shared_idx.values(), key=lambda idx_pair: sort_bonds(bonds0, idx_pair[0]), ): # Get the bond potentials. bond0 = bonds0[idx0] bond1 = bonds1[idx1] # Get the AtomIdx for the atoms in the bond. idx0 = info.atomIdx(bond0.atom0()) idx1 = info.atomIdx(bond0.atom1()) # Check that an atom in the bond is perturbed. if _has_pert_atom([idx0, idx1], pert_idxs): # Cast the bonds as AmberBonds. amber_bond0 = _SireMM.AmberBond(bond0.function(), _SireCAS.Symbol("r")) amber_bond1 = _SireMM.AmberBond(bond1.function(), _SireCAS.Symbol("r")) # Check whether a dummy atoms are present in the lambda = 0 # and lambda = 1 states. initial_dummy = _has_dummy(mol, [idx0, idx1]) final_dummy = _has_dummy(mol, [idx0, idx1], True) # Cannot have a bond with a dummy in both states. if initial_dummy and final_dummy: raise _IncompatibleError( "Dummy atoms are present in both the initial " "and final bond?" ) # Set the bond parameters of the dummy state to those of the non-dummy end state. if initial_dummy or final_dummy: has_dummy = True if initial_dummy: amber_bond0 = amber_bond1 else: amber_bond1 = amber_bond0 else: has_dummy = False # Only write record if the bond parameters change. if has_dummy or amber_bond0 != amber_bond1: # Start bond record. file.write(" bond\n") if perturbation_type in ["discharge_soft", "vanish_soft"]: # Bonds are not perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % amber_bond0.k()) file.write(" initial_equil %.5f\n" % amber_bond0.r0()) file.write(" final_force %.5f\n" % amber_bond0.k()) file.write(" final_equil %.5f\n" % amber_bond0.r0()) elif perturbation_type in ["flip", "full"]: # Bonds are perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % amber_bond0.k()) file.write(" initial_equil %.5f\n" % amber_bond0.r0()) file.write(" final_force %.5f\n" % amber_bond1.k()) file.write(" final_equil %.5f\n" % amber_bond1.r0()) elif perturbation_type in ["grow_soft", "charge_soft"]: # Bonds are already perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write(" initial_force %.5f\n" % amber_bond1.k()) file.write(" initial_equil %.5f\n" % amber_bond1.r0()) file.write(" final_force %.5f\n" % amber_bond1.k()) file.write(" final_equil %.5f\n" % amber_bond1.r0()) # End bond record. file.write(" endbond\n") # 3) Angles. # Extract the angles at lambda = 0 and 1. angles0 = mol.property("angle0").potentials() angles1 = mol.property("angle1").potentials() # Dictionaries to store the AngleIDs at lambda = 0 and 1. angles0_idx = {} angles1_idx = {} # Loop over all angles at lambda = 0. for idx, angle in enumerate(angles0): # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle.atom0()) idx1 = info.atomIdx(angle.atom1()) idx2 = info.atomIdx(angle.atom2()) # Create the AngleID. angle_id = _SireMol.AngleID(idx0, idx1, idx2) # Add to the list of ids. angles0_idx[angle_id] = idx # Loop over all angles at lambda = 1. for idx, angle in enumerate(angles1): # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle.atom0()) idx1 = info.atomIdx(angle.atom1()) idx2 = info.atomIdx(angle.atom2()) # Create the AngleID. angle_id = _SireMol.AngleID(idx0, idx1, idx2) # Add to the list of ids. if angle_id.mirror() in angles0_idx: angles1_idx[angle_id.mirror()] = idx else: angles1_idx[angle_id] = idx # Now work out the AngleIDs that are unique at lambda = 0 and 1 # as well as those that are shared. angles0_unique_idx = {} angles1_unique_idx = {} angles_shared_idx = {} # lambda = 0. for idx in angles0_idx.keys(): if idx not in angles1_idx.keys(): angles0_unique_idx[idx] = angles0_idx[idx] else: angles_shared_idx[idx] = (angles0_idx[idx], angles1_idx[idx]) # lambda = 1. for idx in angles1_idx.keys(): if idx not in angles0_idx.keys(): angles1_unique_idx[idx] = angles1_idx[idx] elif idx not in angles_shared_idx.keys(): angles_shared_idx[idx] = (angles0_idx[idx], angles1_idx[idx]) # First create records for the angles that are unique to lambda = 0 and 1. def sort_angles(angles, idx): # Get the angle potential. angle = angles[idx] # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle.atom0()) idx1 = info.atomIdx(angle.atom1()) idx2 = info.atomIdx(angle.atom2()) return ( mol.atom(idx1).name().value(), mol.atom(idx0).name().value(), mol.atom(idx2).name().value(), ) # lambda = 0. for idx in sorted( angles0_unique_idx.values(), key=lambda idx: sort_angles(angles0, idx) ): # Get the angle potential. angle = angles0[idx] # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle.atom0()) idx1 = info.atomIdx(angle.atom1()) idx2 = info.atomIdx(angle.atom2()) # Cast the function as an AmberAngle. amber_angle = _SireMM.AmberAngle(angle.function(), _SireCAS.Symbol("theta")) # Start angle record. file.write(" angle\n") if perturbation_type in ["full", "flip"]: # Angle data. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle.k()) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % 0.0) file.write(" final_equil %.5f\n" % amber_angle.theta0()) elif perturbation_type in ["discharge_soft", "vanish_soft"]: # Angle data, unperturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle.k()) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % amber_angle.k()) file.write(" final_equil %.5f\n" % amber_angle.theta0()) elif perturbation_type in ["grow_soft", "charge_soft"]: # Angle data, already perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % 0.0) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % 0.0) file.write(" final_equil %.5f\n" % amber_angle.theta0()) # End angle record. file.write(" endangle\n") # lambda = 1. for idx in sorted( angles1_unique_idx.values(), key=lambda idx: sort_angles(angles1, idx) ): # Get the angle potential. angle = angles1[idx] # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle.atom0()) idx1 = info.atomIdx(angle.atom1()) idx2 = info.atomIdx(angle.atom2()) # Cast the function as an AmberAngle. amber_angle = _SireMM.AmberAngle(angle.function(), _SireCAS.Symbol("theta")) # Start angle record. file.write(" angle\n") if perturbation_type in ["full", "flip"]: # Angle data. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % 0.0) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % amber_angle.k()) file.write(" final_equil %.5f\n" % amber_angle.theta0()) elif perturbation_type in ["discharge_soft", "vanish_soft"]: # Angle data, unperturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % 0.0) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % 0.0) file.write(" final_equil %.5f\n" % amber_angle.theta0()) elif perturbation_type in ["grow_soft", "charge_soft"]: # Angle data, already perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle.k()) file.write(" initial_equil %.5f\n" % amber_angle.theta0()) file.write(" final_force %.5f\n" % amber_angle.k()) file.write(" final_equil %.5f\n" % amber_angle.theta0()) # End angle record. file.write(" endangle\n") # Now add records for the shared angles. for idx0, idx1 in sorted( angles_shared_idx.values(), key=lambda idx_pair: sort_angles(angles0, idx_pair[0]), ): # Get the angle potentials. angle0 = angles0[idx0] angle1 = angles1[idx1] # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(angle0.atom0()) idx1 = info.atomIdx(angle0.atom1()) idx2 = info.atomIdx(angle0.atom2()) # Check that an atom in the angle is perturbed. if _has_pert_atom([idx0, idx1, idx2], pert_idxs): # Cast the functions as AmberAngles. amber_angle0 = _SireMM.AmberAngle( angle0.function(), _SireCAS.Symbol("theta") ) amber_angle1 = _SireMM.AmberAngle( angle1.function(), _SireCAS.Symbol("theta") ) # Check whether a dummy atoms are present in the lambda = 0 # and lambda = 1 states. initial_dummy = _has_dummy(mol, [idx0, idx1, idx2]) final_dummy = _has_dummy(mol, [idx0, idx1, idx2], True) # Set the angle parameters of the dummy state to those of the non-dummy end state. if initial_dummy and final_dummy: has_dummy = True amber_angle0 = _SireMM.AmberAngle() amber_angle1 = _SireMM.AmberAngle() elif initial_dummy or final_dummy: has_dummy = True if initial_dummy: amber_angle0 = amber_angle1 else: amber_angle1 = amber_angle0 else: has_dummy = False # Only write record if the angle parameters change. if has_dummy or amber_angle0 != amber_angle1: # Start angle record. file.write(" angle\n") if perturbation_type in ["full", "flip"]: # Angle data. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle0.k()) file.write( " initial_equil %.5f\n" % amber_angle0.theta0() ) file.write(" final_force %.5f\n" % amber_angle1.k()) file.write( " final_equil %.5f\n" % amber_angle1.theta0() ) elif perturbation_type in ["discharge_soft", "vanish_soft"]: # Angle data, unperturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle0.k()) file.write( " initial_equil %.5f\n" % amber_angle0.theta0() ) file.write(" final_force %.5f\n" % amber_angle0.k()) file.write( " final_equil %.5f\n" % amber_angle0.theta0() ) elif perturbation_type in ["grow_soft", "charge_soft"]: # Angle data, already perturbed. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write(" initial_force %.5f\n" % amber_angle1.k()) file.write( " initial_equil %.5f\n" % amber_angle1.theta0() ) file.write(" final_force %.5f\n" % amber_angle1.k()) file.write( " final_equil %.5f\n" % amber_angle1.theta0() ) # End angle record. file.write(" endangle\n") # 4) Dihedrals. # Extract the dihedrals at lambda = 0 and 1. dihedrals0 = mol.property("dihedral0").potentials() dihedrals1 = mol.property("dihedral1").potentials() # Dictionaries to store the DihedralIDs at lambda = 0 and 1. dihedrals0_idx = {} dihedrals1_idx = {} # Loop over all dihedrals at lambda = 0. for idx, dihedral in enumerate(dihedrals0): # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(dihedral.atom0()) idx1 = info.atomIdx(dihedral.atom1()) idx2 = info.atomIdx(dihedral.atom2()) idx3 = info.atomIdx(dihedral.atom3()) # Create the DihedralID. dihedral_id = _SireMol.DihedralID(idx0, idx1, idx2, idx3) # Add to the list of ids. dihedrals0_idx[dihedral_id] = idx # Loop over all dihedrals at lambda = 1. for idx, dihedral in enumerate(dihedrals1): # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(dihedral.atom0()) idx1 = info.atomIdx(dihedral.atom1()) idx2 = info.atomIdx(dihedral.atom2()) idx3 = info.atomIdx(dihedral.atom3()) # Create the DihedralID. dihedral_id = _SireMol.DihedralID(idx0, idx1, idx2, idx3) # Add to the list of ids. if dihedral_id.mirror() in dihedrals0_idx: dihedrals1_idx[dihedral_id.mirror()] = idx else: dihedrals1_idx[dihedral_id] = idx # Now work out the DihedralIDs that are unique at lambda = 0 and 1 # as well as those that are shared. dihedrals0_unique_idx = {} dihedrals1_unique_idx = {} dihedrals_shared_idx = {} # lambda = 0. for idx in dihedrals0_idx.keys(): if idx not in dihedrals1_idx.keys(): dihedrals0_unique_idx[idx] = dihedrals0_idx[idx] else: dihedrals_shared_idx[idx] = (dihedrals0_idx[idx], dihedrals1_idx[idx]) # lambda = 1. for idx in dihedrals1_idx.keys(): if idx not in dihedrals0_idx.keys(): dihedrals1_unique_idx[idx] = dihedrals1_idx[idx] elif idx not in dihedrals_shared_idx.keys(): dihedrals_shared_idx[idx] = (dihedrals0_idx[idx], dihedrals1_idx[idx]) # First create records for the dihedrals that are unique to lambda = 0 and 1. def sort_dihedrals(dihedrals, idx): # Get the dihedral potential. dihedral = dihedrals[idx] # Get the AtomIdx for the atoms in the angle. idx0 = info.atomIdx(dihedral.atom0()) idx1 = info.atomIdx(dihedral.atom1()) idx2 = info.atomIdx(dihedral.atom2()) idx3 = info.atomIdx(dihedral.atom3()) return ( mol.atom(idx1).name().value(), mol.atom(idx2).name().value(), mol.atom(idx0).name().value(), mol.atom(idx3).name().value(), ) # lambda = 0. for idx in sorted( dihedrals0_unique_idx.values(), key=lambda idx: sort_dihedrals(dihedrals0, idx), ): # Get the dihedral potential. dihedral = dihedrals0[idx] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(dihedral.atom0()) idx1 = info.atomIdx(dihedral.atom1()) idx2 = info.atomIdx(dihedral.atom2()) idx3 = info.atomIdx(dihedral.atom3()) # Cast the function as an AmberDihedral. amber_dihedral = _SireMM.AmberDihedral( dihedral.function(), _SireCAS.Symbol("phi") ) # Start dihedral record. file.write(" dihedral\n") # Dihedral data. file.write(" atom0 %s\n" % mol.atom(idx0).name().value()) file.write(" atom1 %s\n" % mol.atom(idx1).name().value()) file.write(" atom2 %s\n" % mol.atom(idx2).name().value()) file.write(" atom3 %s\n" % mol.atom(idx3).name().value()) file.write(" initial_form ") amber_dihedral_terms_sorted = sorted( amber_dihedral.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ) for term in amber_dihedral_terms_sorted: if perturbation_type in [ "discharge_soft", "vanish_soft", "flip", "full", ]: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in amber_dihedral_terms_sorted: if perturbation_type in ["discharge_soft", "vanish_soft"]: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) file.write("\n") # End dihedral record. file.write(" enddihedral\n") # lambda = 1. for idx in sorted( dihedrals1_unique_idx.values(), key=lambda idx: sort_dihedrals(dihedrals1, idx), ): # Get the dihedral potential. dihedral = dihedrals1[idx] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(dihedral.atom0()) idx1 = info.atomIdx(dihedral.atom1()) idx2 = info.atomIdx(dihedral.atom2()) idx3 = info.atomIdx(dihedral.atom3()) # Cast the function as an AmberDihedral. amber_dihedral = _SireMM.AmberDihedral( dihedral.function(), _SireCAS.Symbol("phi") ) # Start dihedral record. file.write(" dihedral\n") # Dihedral data. file.write(" atom0 %s\n" % mol.atom(idx0).name().value()) file.write(" atom1 %s\n" % mol.atom(idx1).name().value()) file.write(" atom2 %s\n" % mol.atom(idx2).name().value()) file.write(" atom3 %s\n" % mol.atom(idx3).name().value()) file.write(" initial_form ") amber_dihedral_terms_sorted = sorted( amber_dihedral.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ) for term in amber_dihedral_terms_sorted: if perturbation_type in [ "discharge_soft", "vanish_soft", "flip", "full", ]: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in amber_dihedral_terms_sorted: if perturbation_type in ["discharge_soft", "vanish_soft"]: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) file.write("\n") # End dihedral record. file.write(" enddihedral\n") # Now add records for the shared dihedrals. for idx0, idx1 in sorted( dihedrals_shared_idx.values(), key=lambda idx_pair: sort_dihedrals(dihedrals0, idx_pair[0]), ): # Get the dihedral potentials. dihedral0 = dihedrals0[idx0] dihedral1 = dihedrals1[idx1] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(dihedral0.atom0()) idx1 = info.atomIdx(dihedral0.atom1()) idx2 = info.atomIdx(dihedral0.atom2()) idx3 = info.atomIdx(dihedral0.atom3()) # Check that an atom in the dihedral is perturbed. if _has_pert_atom([idx0, idx1, idx2, idx3], pert_idxs): # Cast the functions as AmberDihedrals. amber_dihedral0 = _SireMM.AmberDihedral( dihedral0.function(), _SireCAS.Symbol("phi") ) amber_dihedral1 = _SireMM.AmberDihedral( dihedral1.function(), _SireCAS.Symbol("phi") ) # Whether to zero the barrier height of the initial state dihedral. zero_k = False # Whether to force writing the dihedral to the perturbation file. force_write = False # Whether any atom in each end state is a dummy. has_dummy_initial = _has_dummy(mol, [idx0, idx1, idx2, idx3]) has_dummy_final = _has_dummy(mol, [idx0, idx1, idx2, idx3], True) # Whether all atoms in each state are dummies. all_dummy_initial = all(_is_dummy(mol, [idx0, idx1, idx2, idx3])) all_dummy_final = all(_is_dummy(mol, [idx0, idx1, idx2, idx3], True)) # Dummies are present in both end states, use null potentials. if has_dummy_initial and has_dummy_final: amber_dihedral0 = _SireMM.AmberDihedral() amber_dihedral1 = _SireMM.AmberDihedral() # Dummies in the initial state. elif has_dummy_initial: if all_dummy_initial and not zero_dummy_dihedrals: # Use the potential at lambda = 1 and write to the pert file. amber_dihedral0 = amber_dihedral1 force_write = True else: zero_k = True # Dummies in the final state. elif has_dummy_final: if all_dummy_final and not zero_dummy_dihedrals: # Use the potential at lambda = 0 and write to the pert file. amber_dihedral1 = amber_dihedral0 force_write = True else: zero_k = True # Only write record if the dihedral parameters change. if zero_k or force_write or amber_dihedral0 != amber_dihedral1: # Initialise a null dihedral. null_dihedral = _SireMM.AmberDihedral() # Don't write the dihedral record if both potentials are null. if not ( amber_dihedral0 == null_dihedral and amber_dihedral1 == null_dihedral ): # Start dihedral record. file.write(" dihedral\n") # Dihedral data. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write( " atom3 %s\n" % mol.atom(idx3).name().value() ) file.write(" initial_form ") if perturbation_type in ["full", "flip"]: # Do the full approach. for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") elif perturbation_type in ["discharge_soft", "vanish_soft"]: # Don't perturb dihedrals, i.e. change k1 to k0. for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") # Looping over amber_dihedral0 instead of amber_dihedral1! for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") else: # Dihedrals are already perturbed, i.e. change k0 to k1. for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): # Both checks are for has_dummy_final. if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") # End dihedral record. file.write(" enddihedral\n") # 5) Impropers. # Extract the impropers at lambda = 0 and 1. impropers0 = mol.property("improper0").potentials() impropers1 = mol.property("improper1").potentials() # Dictionaries to store the ImproperIDs at lambda = 0 and 1. impropers0_idx = {} impropers1_idx = {} # Loop over all impropers at lambda = 0. for idx, improper in enumerate(impropers0): # Get the AtomIdx for the atoms in the improper. idx0 = info.atomIdx(improper.atom0()) idx1 = info.atomIdx(improper.atom1()) idx2 = info.atomIdx(improper.atom2()) idx3 = info.atomIdx(improper.atom3()) # Create the ImproperID. improper_id = _SireMol.ImproperID(idx0, idx1, idx2, idx3) # Add to the list of ids. impropers0_idx[improper_id] = idx # Loop over all impropers at lambda = 1. for idx, improper in enumerate(impropers1): # Get the AtomIdx for the atoms in the improper. idx0 = info.atomIdx(improper.atom0()) idx1 = info.atomIdx(improper.atom1()) idx2 = info.atomIdx(improper.atom2()) idx3 = info.atomIdx(improper.atom3()) # Create the ImproperID. improper_id = _SireMol.ImproperID(idx0, idx1, idx2, idx3) # Add to the list of ids. # You cannot mirror an improper! impropers1_idx[improper_id] = idx # Now work out the ImproperIDs that are unique at lambda = 0 and 1 # as well as those that are shared. Note that the ordering of # impropers is inconsistent between molecular topology formats so # we test all permutations of atom ordering to find matches. This # is achieved using the ImproperID.equivalent() method. impropers0_unique_idx = {} impropers1_unique_idx = {} impropers_shared_idx = {} # lambda = 0. for idx0 in impropers0_idx.keys(): for idx1 in impropers1_idx.keys(): if idx0.equivalent(idx1): impropers_shared_idx[idx0] = ( impropers0_idx[idx0], impropers1_idx[idx1], ) break else: impropers0_unique_idx[idx0] = impropers0_idx[idx0] # lambda = 1. for idx1 in impropers1_idx.keys(): for idx0 in impropers0_idx.keys(): if idx1.equivalent(idx0): # Don't store duplicates. if not idx0 in impropers_shared_idx.keys(): impropers_shared_idx[idx1] = ( impropers0_idx[idx0], impropers1_idx[idx1], ) break else: impropers1_unique_idx[idx1] = impropers1_idx[idx1] # First create records for the impropers that are unique to lambda = 0 and 1. # lambda = 0. for idx in sorted( impropers0_unique_idx.values(), key=lambda idx: sort_dihedrals(impropers0, idx), ): # Get the improper potential. improper = impropers0[idx] # Get the AtomIdx for the atoms in the improper. idx0 = info.atomIdx(improper.atom0()) idx1 = info.atomIdx(improper.atom1()) idx2 = info.atomIdx(improper.atom2()) idx3 = info.atomIdx(improper.atom3()) # Cast the function as an AmberDihedral. amber_dihedral = _SireMM.AmberDihedral( improper.function(), _SireCAS.Symbol("phi") ) # Start improper record. file.write(" improper\n") # Dihedral data. file.write(" atom0 %s\n" % mol.atom(idx0).name().value()) file.write(" atom1 %s\n" % mol.atom(idx1).name().value()) file.write(" atom2 %s\n" % mol.atom(idx2).name().value()) file.write(" atom3 %s\n" % mol.atom(idx3).name().value()) file.write(" initial_form ") amber_dihedral_terms_sorted = sorted( amber_dihedral.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ) for term in amber_dihedral_terms_sorted: if perturbation_type in [ "discharge_soft", "vanish_soft", "flip", "full", ]: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in amber_dihedral_terms_sorted: if perturbation_type in ["discharge_soft", "vanish_soft"]: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) file.write("\n") # End improper record. file.write(" endimproper\n") # lambda = 1. for idx in sorted( impropers1_unique_idx.values(), key=lambda idx: sort_dihedrals(impropers1, idx), ): # Get the improper potential. improper = impropers1[idx] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atomIdx(improper.atom0()) idx1 = info.atomIdx(improper.atom1()) idx2 = info.atomIdx(improper.atom2()) idx3 = info.atomIdx(improper.atom3()) # Cast the function as an AmberDihedral. amber_dihedral = _SireMM.AmberDihedral( improper.function(), _SireCAS.Symbol("phi") ) # Start improper record. file.write(" improper\n") # Improper data. file.write(" atom0 %s\n" % mol.atom(idx0).name().value()) file.write(" atom1 %s\n" % mol.atom(idx1).name().value()) file.write(" atom2 %s\n" % mol.atom(idx2).name().value()) file.write(" atom3 %s\n" % mol.atom(idx3).name().value()) file.write(" initial_form ") amber_dihedral_terms_sorted = sorted( amber_dihedral.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ) for term in amber_dihedral_terms_sorted: if perturbation_type in [ "discharge_soft", "vanish_soft", "flip", "full", ]: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in amber_dihedral_terms_sorted: if perturbation_type in ["discharge_soft", "vanish_soft"]: file.write( " %5.4f %.1f %7.6f" % (0.0, term.periodicity(), term.phase()) ) else: file.write( " %5.4f %.1f %7.6f" % (term.k(), term.periodicity(), term.phase()) ) file.write("\n") # End improper record. file.write(" endimproper\n") # Now add records for the shared impropers. for idx0, idx1 in sorted( impropers_shared_idx.values(), key=lambda idx_pair: sort_dihedrals(impropers0, idx_pair[0]), ): # Get the improper potentials. improper0 = impropers0[idx0] improper1 = impropers1[idx1] # Get the AtomIdx for the atoms in the improper. idx0 = info.atomIdx(improper0.atom0()) idx1 = info.atomIdx(improper0.atom1()) idx2 = info.atomIdx(improper0.atom2()) idx3 = info.atomIdx(improper0.atom3()) # Check that an atom in the improper is perturbed. if _has_pert_atom([idx0, idx1, idx2, idx3], pert_idxs): # Cast the functions as AmberDihedrals. amber_dihedral0 = _SireMM.AmberDihedral( improper0.function(), _SireCAS.Symbol("phi") ) amber_dihedral1 = _SireMM.AmberDihedral( improper1.function(), _SireCAS.Symbol("phi") ) # Whether to zero the barrier height of the initial/final improper. zero_k = False # Whether to force writing the improper to the perturbation file. force_write = False # Whether any atom in each end state is a dummy. has_dummy_initial = _has_dummy(mol, [idx0, idx1, idx2, idx3]) has_dummy_final = _has_dummy(mol, [idx0, idx1, idx2, idx3], True) # Whether all atoms in each state are dummies. all_dummy_initial = all(_is_dummy(mol, [idx0, idx1, idx2, idx3])) all_dummy_final = all(_is_dummy(mol, [idx0, idx1, idx2, idx3], True)) # Dummies are present in both end states, use null potentials. if has_dummy_initial and has_dummy_final: amber_dihedral0 = _SireMM.AmberDihedral() amber_dihedral1 = _SireMM.AmberDihedral() # Dummies in the initial state. elif has_dummy_initial: if all_dummy_initial and not zero_dummy_impropers: # Use the potential at lambda = 1 and write to the pert file. amber_dihedral0 = amber_dihedral1 force_write = True else: zero_k = True # Dummies in the final state. elif has_dummy_final: if all_dummy_final and not zero_dummy_impropers: # Use the potential at lambda = 0 and write to the pert file. amber_dihedral1 = amber_dihedral0 force_write = True else: zero_k = True # Only write record if the improper parameters change. if zero_k or force_write or amber_dihedral0 != amber_dihedral1: # Initialise a null dihedral. null_dihedral = _SireMM.AmberDihedral() # Don't write the improper record if both potentials are null. if not ( amber_dihedral0 == null_dihedral and amber_dihedral1 == null_dihedral ): # Start improper record. file.write(" improper\n") # Improper data. file.write( " atom0 %s\n" % mol.atom(idx0).name().value() ) file.write( " atom1 %s\n" % mol.atom(idx1).name().value() ) file.write( " atom2 %s\n" % mol.atom(idx2).name().value() ) file.write( " atom3 %s\n" % mol.atom(idx3).name().value() ) file.write(" initial_form ") if perturbation_type in ["full", "flip"]: # Do the full approach. for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") elif perturbation_type in ["discharge_soft", "vanish_soft"]: # Don't perturb dihedrals, i.e. change k1 to k0. for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") # looping over amber_dihedral0 instead of amber_dihedral1! for term in sorted( amber_dihedral0.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_initial: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") else: # Dihedrals are already perturbed, i.e. change k0 to k1. for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): # Both checks are for has_dummy_final. if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") file.write(" final_form ") for term in sorted( amber_dihedral1.terms(), key=lambda t: (t.k(), t.periodicity(), t.phase()), ): if zero_k and has_dummy_final: k = 0.0 else: k = term.k() file.write( " %5.4f %.1f %7.6f" % (k, term.periodicity(), term.phase()) ) file.write("\n") # End improper record. file.write(" endimproper\n") # End molecule record. file.write("endmolecule\n") # Finally, convert the molecule to the lambda = 0 state. # Make the molecule editable. mol = mol.edit() # Remove the perturbable molecule flag. mol = mol.removeProperty("is_perturbable").molecule() # Special handling for the mass and element properties. Perturbed atoms # take the mass and atomic number from the maximum of both states, # not the lambda = 0 state. if mol.hasProperty("mass0") and mol.hasProperty("element0"): # See if the mass or element properties exists in the user map. new_mass_prop = property_map.get("mass", "mass") new_element_prop = property_map.get("element", "element") for idx in range(0, mol.nAtoms()): # Convert to an AtomIdx. idx = _SireMol.AtomIdx(idx) # Extract the elements of the end states. element0 = mol.atom(idx).property("element0") element1 = mol.atom(idx).property("element1") # The end states are different elements. if element0 != element1: # Extract the mass of the end states. mass0 = mol.atom(idx).property("mass0") mass1 = mol.atom(idx).property("mass1") # Choose the heaviest mass. if mass0.value() > mass1.value(): mass = mass0 else: mass = mass1 # Choose the element with the most protons. if element0.nProtons() > element1.nProtons(): element = element0 else: element = element1 # Set the updated properties. mol = mol.atom(idx).setProperty(new_mass_prop, mass).molecule() mol = mol.atom(idx).setProperty(new_element_prop, element).molecule() else: # Use the properties at lambda = 0. mass = mol.atom(idx).property("mass0") mol = mol.atom(idx).setProperty(new_mass_prop, mass).molecule() mol = mol.atom(idx).setProperty(new_element_prop, element0).molecule() # Delete redundant properties. mol = mol.removeProperty("mass0").molecule() mol = mol.removeProperty("mass1").molecule() mol = mol.removeProperty("element0").molecule() mol = mol.removeProperty("element1").molecule() # Rename all properties in the molecule: "prop0" --> "prop". # Delete all properties named "prop0" and "prop1". for prop in mol.propertyKeys(): if prop[-1] == "0" and prop != "mass0" and prop != "element0": # See if this property exists in the user map. new_prop = property_map.get(prop[:-1], prop[:-1]) # Copy the property using the updated name. mol = mol.setProperty(new_prop, mol.property(prop)).molecule() # Delete redundant properties. mol = mol.removeProperty(prop).molecule() mol = mol.removeProperty(prop[:-1] + "1").molecule() # Return the updated molecule. return _Molecule(mol.commit()) def _has_pert_atom(idxs, pert_idxs): """ Internal function to check whether a potential contains perturbed atoms. Parameters ---------- idxs : [AtomIdx] A list of atom indices involved in the potential. pert_idxs : [AtomIdx] A list of atom indices that are perturbed. Returns ------- has_pert_atom : bool Whether the potential includes a perturbed atom. """ for idx in idxs: if idx in pert_idxs: return True return False def _has_dummy(mol, idxs, is_lambda1=False): """ Internal function to check whether any atom is a dummy. Parameters ---------- mol : Sire.Mol.Molecule The molecule. idxs : [AtomIdx] A list of atom indices. is_lambda1 : bool Whether to check the lambda = 1 state. Returns ------- has_dummy : bool Whether a dummy atom is present. """ # Set the element and ambertype property associated with the end state. # We need to check by ambertype too since this molecule may have been # created via sire.morph.create_from_pertfile, in which case the element # property will have been set to the end state with the largest mass, i.e. # may no longer by a dummy. if is_lambda1: element_prop = "element1" ambertype_prop = "ambertype1" else: element_prop = "element0" ambertype_prop = "ambertype0" element_dummy = _SireMol.Element(0) ambertype_dummy = "du" # Check that the molecule has the ambertype property. has_ambertype = mol.hasProperty(ambertype_prop) # Check whether an of the atoms is a dummy. for idx in idxs: if mol.atom(idx).property(element_prop) == element_dummy or ( has_ambertype and mol.atom(idx).property(ambertype_prop) == ambertype_dummy ): return True return False def _is_dummy(mol, idxs, is_lambda1=False): """ Internal function to return whether each atom is a dummy. If a single index is pased, then a single boolean is returned. Parameters ---------- mol : Sire.Mol.Molecule The molecule. idxs : [AtomIdx] A list of atom indices. is_lambda1 : bool Whether to check the lambda = 1 state. Returns ------- is_dummy : [bool] Whether each atom is a dummy. """ # Set the element and ambertype property associated with the end state. # We need to check by ambertype too since this molecule may have been # created via sire.morph.create_from_pertfile, in which case the element # property will have been set to the end state with the largest mass, i.e. # may no longer by a dummy. if is_lambda1: element_prop = "element1" ambertype_prop = "ambertype1" else: element_prop = "element0" ambertype_prop = "ambertype0" if is_lambda1: element_prop = "element1" ambertype_prop = "ambertype1" else: element_prop = "element0" ambertype_prop = "ambertype0" element_dummy = _SireMol.Element(0) ambertype_dummy = "du" # Check that the molecule has the ambertype property. has_ambertype = mol.hasProperty(ambertype_prop) # Initialise a list to store the state of each atom. is_dummy = [] # Convert single index to list. if not isinstance(idxs, list): idxs = [idxs] # Check whether each of the atoms is a dummy. for idx in idxs: is_dummy.append( mol.atom(idx).property(element_prop) == element_dummy or ( has_ambertype and mol.atom(idx).property(ambertype_prop) == ambertype_dummy ) ) if len(is_dummy) == 1: return is_dummy[0] else: return is_dummy def _random_suffix(basename, size=4, chars=_string.ascii_uppercase + _string.digits): """ Internal helper function to generate a random atom name suffix to avoid naming clashes. Adapted from: https://stackoverflow.com/questions/2257441/random-string-generation-with-upper-case-letters-and-digits-in-python Parameters ---------- basename : str The base string to which a suffix will be appended. size : int The maximum width of the string, i.e. len(basename + suffix). chars : str The set of characters to include in the suffix. Returns ------- suffix : str The randomly generated suffix. """ basename_size = len(basename) if basename_size >= size: raise ValueError( "Cannot generate suffix for basename '%s'. " % basename + "AMBER atom names can only be 4 characters wide." ) return "".join(_random.choice(chars) for _ in range(size - basename_size)) def _somd1_compatibility(system): """ Makes a perturbation SOMD1 compatible. Parameters ---------- system : :class:`System <BioSimSpace._SireWrappers.System>` The system containing the molecules to be perturbed. Returns ------- system : :class:`System <BioSimSpace._SireWrappers.System>` The updated system. """ # Check the system is a Sire system. if not isinstance(system, _System): raise TypeError("'system' must of type 'BioSimSpace._SireWrappers.System'") # Search for perturbable molecules. pert_mols = system.getPerturbableMolecules() if len(pert_mols) == 0: raise KeyError("No perturbable molecules in the system") # Store a dummy element. dummy = _SireMol.Element("Xx") for mol in pert_mols: # Get the underlying Sire molecule. mol = mol._sire_object # Store the molecule info. info = mol.info() # Get an editable version of the molecule. edit_mol = mol.edit() ########################## # First process the bonds. ########################## new_bonds0 = _SireMM.TwoAtomFunctions(mol.info()) new_bonds1 = _SireMM.TwoAtomFunctions(mol.info()) # Extract the bonds at lambda = 0 and 1. bonds0 = mol.property("bond0").potentials() bonds1 = mol.property("bond1").potentials() # Dictionaries to store the BondIDs at lambda = 0 and 1. bonds0_idx = {} bonds1_idx = {} # Loop over all bonds at lambda = 0. for idx, bond in enumerate(bonds0): # Get the AtomIdx for the atoms in the bond. idx0 = info.atom_idx(bond.atom0()) idx1 = info.atom_idx(bond.atom1()) # Create the BondID. bond_id = _SireMol.BondID(idx0, idx1) # Add to the list of ids. bonds0_idx[bond_id] = idx # Loop over all bonds at lambda = 1. for idx, bond in enumerate(bonds1): # Get the AtomIdx for the atoms in the bond. idx0 = info.atom_idx(bond.atom0()) idx1 = info.atom_idx(bond.atom1()) # Create the BondID. bond_id = _SireMol.BondID(idx0, idx1) # Add to the list of ids. if bond_id.mirror() in bonds0_idx: bonds1_idx[bond_id.mirror()] = idx else: bonds1_idx[bond_id] = idx # Now work out the BondIDs that are unique at lambda = 0 and 1 # as well as those that are shared. bonds0_unique_idx = {} bonds1_unique_idx = {} bonds_shared_idx = {} # lambda = 0. for idx in bonds0_idx.keys(): if idx not in bonds1_idx.keys(): bonds0_unique_idx[idx] = bonds0_idx[idx] else: bonds_shared_idx[idx] = (bonds0_idx[idx], bonds1_idx[idx]) # lambda = 1. for idx in bonds1_idx.keys(): if idx not in bonds0_idx.keys(): bonds1_unique_idx[idx] = bonds1_idx[idx] elif idx not in bonds_shared_idx.keys(): bonds_shared_idx[idx] = (bonds0_idx[idx], bonds1_idx[idx]) # Loop over the shared bonds. for idx0, idx1 in bonds_shared_idx.values(): # Get the bond potentials. p0 = bonds0[idx0] p1 = bonds1[idx1] # Get the AtomIdx for the atoms in the angle. idx0 = p0.atom0() idx1 = p0.atom1() # Check whether a dummy atoms are present in the lambda = 0 # and lambda = 1 states. initial_dummy = _has_dummy(mol, [idx0, idx1]) final_dummy = _has_dummy(mol, [idx0, idx1], True) # If there is a dummy, then set the potential to the opposite state. # This should already be the case, but we explicitly set it here. if initial_dummy: new_bonds0.set(idx0, idx1, p1.function()) new_bonds1.set(idx0, idx1, p1.function()) elif final_dummy: new_bonds0.set(idx0, idx1, p0.function()) new_bonds1.set(idx0, idx1, p0.function()) else: new_bonds0.set(idx0, idx1, p0.function()) new_bonds1.set(idx0, idx1, p1.function()) # Set the new bonded terms. edit_mol = edit_mol.set_property("bond0", new_bonds0).molecule() edit_mol = edit_mol.set_property("bond1", new_bonds1).molecule() ######################### # Now process the angles. ######################### new_angles0 = _SireMM.ThreeAtomFunctions(mol.info()) new_angles1 = _SireMM.ThreeAtomFunctions(mol.info()) # Extract the angles at lambda = 0 and 1. angles0 = mol.property("angle0").potentials() angles1 = mol.property("angle1").potentials() # Dictionaries to store the AngleIDs at lambda = 0 and 1. angles0_idx = {} angles1_idx = {} # Loop over all angles at lambda = 0. for idx, angle in enumerate(angles0): # Get the AtomIdx for the atoms in the angle. idx0 = info.atom_idx(angle.atom0()) idx1 = info.atom_idx(angle.atom1()) idx2 = info.atom_idx(angle.atom2()) # Create the AngleID. angle_id = _SireMol.AngleID(idx0, idx1, idx2) # Add to the list of ids. angles0_idx[angle_id] = idx # Loop over all angles at lambda = 1. for idx, angle in enumerate(angles1): # Get the AtomIdx for the atoms in the angle. idx0 = info.atom_idx(angle.atom0()) idx1 = info.atom_idx(angle.atom1()) idx2 = info.atom_idx(angle.atom2()) # Create the AngleID. angle_id = _SireMol.AngleID(idx0, idx1, idx2) # Add to the list of ids. if angle_id.mirror() in angles0_idx: angles1_idx[angle_id.mirror()] = idx else: angles1_idx[angle_id] = idx # Now work out the AngleIDs that are unique at lambda = 0 and 1 # as well as those that are shared. angles0_unique_idx = {} angles1_unique_idx = {} angles_shared_idx = {} # lambda = 0. for idx in angles0_idx.keys(): if idx not in angles1_idx.keys(): angles0_unique_idx[idx] = angles0_idx[idx] else: angles_shared_idx[idx] = (angles0_idx[idx], angles1_idx[idx]) # lambda = 1. for idx in angles1_idx.keys(): if idx not in angles0_idx.keys(): angles1_unique_idx[idx] = angles1_idx[idx] elif idx not in angles_shared_idx.keys(): angles_shared_idx[idx] = (angles0_idx[idx], angles1_idx[idx]) # Loop over the angles. for idx0, idx1 in angles_shared_idx.values(): # Get the angle potentials. p0 = angles0[idx0] p1 = angles1[idx1] # Get the AtomIdx for the atoms in the angle. idx0 = p0.atom0() idx1 = p0.atom1() idx2 = p0.atom2() # Check whether a dummy atoms are present in the lambda = 0 # and lambda = 1 states. initial_dummy = _has_dummy(mol, [idx0, idx1, idx2]) final_dummy = _has_dummy(mol, [idx0, idx1, idx2], True) # If both end states contain a dummy, the use null potentials. if initial_dummy and final_dummy: theta = _SireCAS.Symbol("theta") null_angle = _SireMM.AmberAngle(0.0, theta).to_expression(theta) new_angles0.set(idx0, idx1, idx2, null_angle) new_angles1.set(idx0, idx1, idx2, null_angle) # If the initial state contains a dummy, then use the potential from the final state. # This should already be the case, but we explicitly set it here. elif initial_dummy: new_angles0.set(idx0, idx1, idx2, p1.function()) new_angles1.set(idx0, idx1, idx2, p1.function()) # If the final state contains a dummy, then use the potential from the initial state. # This should already be the case, but we explicitly set it here. elif final_dummy: new_angles0.set(idx0, idx1, idx2, p0.function()) new_angles1.set(idx0, idx1, idx2, p0.function()) # Otherwise, use the potentials from the initial and final states. else: new_angles0.set(idx0, idx1, idx2, p0.function()) new_angles1.set(idx0, idx1, idx2, p1.function()) # Set the new angle terms. edit_mol = edit_mol.set_property("angle0", new_angles0).molecule() edit_mol = edit_mol.set_property("angle1", new_angles1).molecule() ############################ # Now process the dihedrals. ############################ new_dihedrals0 = _SireMM.FourAtomFunctions(mol.info()) new_dihedrals1 = _SireMM.FourAtomFunctions(mol.info()) # Extract the dihedrals at lambda = 0 and 1. dihedrals0 = mol.property("dihedral0").potentials() dihedrals1 = mol.property("dihedral1").potentials() # Dictionaries to store the DihedralIDs at lambda = 0 and 1. dihedrals0_idx = {} dihedrals1_idx = {} # Loop over all dihedrals at lambda = 0. for idx, dihedral in enumerate(dihedrals0): # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atom_idx(dihedral.atom0()) idx1 = info.atom_idx(dihedral.atom1()) idx2 = info.atom_idx(dihedral.atom2()) idx3 = info.atom_idx(dihedral.atom3()) # Create the DihedralID. dihedral_id = _SireMol.DihedralID(idx0, idx1, idx2, idx3) # Add to the list of ids. dihedrals0_idx[dihedral_id] = idx # Loop over all dihedrals at lambda = 1. for idx, dihedral in enumerate(dihedrals1): # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atom_idx(dihedral.atom0()) idx1 = info.atom_idx(dihedral.atom1()) idx2 = info.atom_idx(dihedral.atom2()) idx3 = info.atom_idx(dihedral.atom3()) # Create the DihedralID. dihedral_id = _SireMol.DihedralID(idx0, idx1, idx2, idx3) # Add to the list of ids. if dihedral_id.mirror() in dihedrals0_idx: dihedrals1_idx[dihedral_id.mirror()] = idx else: dihedrals1_idx[dihedral_id] = idx # Now work out the DihedralIDs that are unique at lambda = 0 and 1 # as well as those that are shared. dihedrals0_unique_idx = {} dihedrals1_unique_idx = {} dihedrals_shared_idx = {} # lambda = 0. for idx in dihedrals0_idx.keys(): if idx not in dihedrals1_idx.keys(): dihedrals0_unique_idx[idx] = dihedrals0_idx[idx] else: dihedrals_shared_idx[idx] = (dihedrals0_idx[idx], dihedrals1_idx[idx]) # lambda = 1. for idx in dihedrals1_idx.keys(): if idx not in dihedrals0_idx.keys(): dihedrals1_unique_idx[idx] = dihedrals1_idx[idx] elif idx not in dihedrals_shared_idx.keys(): dihedrals_shared_idx[idx] = (dihedrals0_idx[idx], dihedrals1_idx[idx]) # Loop over the dihedrals. for idx0, idx1 in dihedrals_shared_idx.values(): # Get the dihedral potentials. p0 = dihedrals0[idx0] p1 = dihedrals1[idx1] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atom_idx(p0.atom0()) idx1 = info.atom_idx(p0.atom1()) idx2 = info.atom_idx(p0.atom2()) idx3 = info.atom_idx(p0.atom3()) # Whether any atom in each end state is a dummy. has_dummy_initial = _has_dummy(mol, [idx0, idx1, idx2, idx3]) has_dummy_final = _has_dummy(mol, [idx0, idx1, idx2, idx3], True) # Whether all atoms in each state are dummies. all_dummy_initial = all(_is_dummy(mol, [idx0, idx1, idx2, idx3])) all_dummy_final = all(_is_dummy(mol, [idx0, idx1, idx2, idx3], True)) # If both end states contain a dummy, the use null potentials. if has_dummy_initial and has_dummy_final: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_dihedrals0.set(idx0, idx1, idx2, idx3, null_dihedral) new_dihedrals1.set(idx0, idx1, idx2, idx3, null_dihedral) elif has_dummy_initial: # If all the atoms are dummy, then use the potential from the final state. if all_dummy_initial: new_dihedrals0.set(idx0, idx1, idx2, idx3, p1.function()) new_dihedrals1.set(idx0, idx1, idx2, idx3, p1.function()) # Otherwise, zero the potential. else: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_dihedrals0.set(idx0, idx1, idx2, idx3, null_dihedral) new_dihedrals1.set(idx0, idx1, idx2, idx3, p1.function()) elif has_dummy_final: # If all the atoms are dummy, then use the potential from the initial state. if all_dummy_final: new_dihedrals0.set(idx0, idx1, idx2, idx3, p0.function()) new_dihedrals1.set(idx0, idx1, idx2, idx3, p0.function()) # Otherwise, zero the potential. else: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_dihedrals0.set(idx0, idx1, idx2, idx3, p0.function()) new_dihedrals1.set(idx0, idx1, idx2, idx3, null_dihedral) else: new_dihedrals0.set(idx0, idx1, idx2, idx3, p0.function()) new_dihedrals1.set(idx0, idx1, idx2, idx3, p1.function()) # Set the new dihedral terms. edit_mol = edit_mol.set_property("dihedral0", new_dihedrals0).molecule() edit_mol = edit_mol.set_property("dihedral1", new_dihedrals1).molecule() ############################ # Now process the impropers. ############################ new_impropers0 = _SireMM.FourAtomFunctions(mol.info()) new_impropers1 = _SireMM.FourAtomFunctions(mol.info()) # Extract the impropers at lambda = 0 and 1. impropers0 = mol.property("improper0").potentials() impropers1 = mol.property("improper1").potentials() # Dictionaries to store the ImproperIDs at lambda = 0 and 1. impropers0_idx = {} impropers1_idx = {} # Loop over all impropers at lambda = 0. for idx, improper in enumerate(impropers0): # Get the AtomIdx for the atoms in the improper. idx0 = info.atom_idx(improper.atom0()) idx1 = info.atom_idx(improper.atom1()) idx2 = info.atom_idx(improper.atom2()) idx3 = info.atom_idx(improper.atom3()) # Create the ImproperID. improper_id = _SireMol.ImproperID(idx0, idx1, idx2, idx3) # Add to the list of ids. impropers0_idx[improper_id] = idx # Loop over all impropers at lambda = 1. for idx, improper in enumerate(impropers1): # Get the AtomIdx for the atoms in the improper. idx0 = info.atom_idx(improper.atom0()) idx1 = info.atom_idx(improper.atom1()) idx2 = info.atom_idx(improper.atom2()) idx3 = info.atom_idx(improper.atom3()) # Create the ImproperID. improper_id = _SireMol.ImproperID(idx0, idx1, idx2, idx3) # Add to the list of ids. # You cannot mirror an improper! impropers1_idx[improper_id] = idx # Now work out the ImproperIDs that are unique at lambda = 0 and 1 # as well as those that are shared. Note that the ordering of # impropers is inconsistent between molecular topology formats so # we test all permutations of atom ordering to find matches. This # is achieved using the ImproperID.equivalent() method. impropers0_unique_idx = {} impropers1_unique_idx = {} impropers_shared_idx = {} # lambda = 0. for idx0 in impropers0_idx.keys(): for idx1 in impropers1_idx.keys(): if idx0.equivalent(idx1): impropers_shared_idx[idx0] = ( impropers0_idx[idx0], impropers1_idx[idx1], ) break else: impropers0_unique_idx[idx0] = impropers0_idx[idx0] # lambda = 1. for idx1 in impropers1_idx.keys(): for idx0 in impropers0_idx.keys(): if idx1.equivalent(idx0): # Don't store duplicates. if not idx0 in impropers_shared_idx.keys(): impropers_shared_idx[idx1] = ( impropers0_idx[idx0], impropers1_idx[idx1], ) break else: impropers1_unique_idx[idx1] = impropers1_idx[idx1] # Loop over the impropers. for idx0, idx1 in impropers_shared_idx.values(): # Get the improper potentials. p0 = impropers0[idx0] p1 = impropers1[idx1] # Get the AtomIdx for the atoms in the dihedral. idx0 = info.atom_idx(p0.atom0()) idx1 = info.atom_idx(p0.atom1()) idx2 = info.atom_idx(p0.atom2()) idx3 = info.atom_idx(p0.atom3()) # Whether any atom in each end state is a dummy. has_dummy_initial = _has_dummy(mol, [idx0, idx1, idx2, idx3]) has_dummy_final = _has_dummy(mol, [idx0, idx1, idx2, idx3], True) # Whether all atoms in each state are dummies. all_dummy_initial = all(_is_dummy(mol, [idx0, idx1, idx2, idx3])) all_dummy_final = all(_is_dummy(mol, [idx0, idx1, idx2, idx3], True)) if has_dummy_initial and has_dummy_final: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_impropers0.set(idx0, idx1, idx2, idx3, null_dihedral) new_impropers1.set(idx0, idx1, idx2, idx3, null_dihedral) elif has_dummy_initial: # If all the atoms are dummy, then use the potential from the final state. if all_dummy_initial: new_impropers0.set(idx0, idx1, idx2, idx3, p1.function()) new_impropers1.set(idx0, idx1, idx2, idx3, p1.function()) # Otherwise, zero the potential. else: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_impropers0.set(idx0, idx1, idx2, idx3, null_dihedral) new_impropers1.set(idx0, idx1, idx2, idx3, p1.function()) elif has_dummy_final: # If all the atoms are dummy, then use the potential from the initial state. if all_dummy_final: new_impropers0.set(idx0, idx1, idx2, idx3, p0.function()) new_impropers1.set(idx0, idx1, idx2, idx3, p0.function()) # Otherwise, zero the potential. else: phi = _SireCAS.Symbol("phi") null_dihedral = _SireMM.AmberDihedral(0.0, phi).to_expression(phi) new_impropers0.set(idx0, idx1, idx2, idx3, p0.function()) new_impropers1.set(idx0, idx1, idx2, idx3, null_dihedral) else: new_impropers0.set(idx0, idx1, idx2, idx3, p0.function()) new_impropers1.set(idx0, idx1, idx2, idx3, p1.function()) # Set the new improper terms. edit_mol = edit_mol.set_property("improper0", new_impropers0).molecule() edit_mol = edit_mol.set_property("improper1", new_impropers1).molecule() # Commit the changes and update the molecule in the system. system._sire_object.update(edit_mol.commit()) # Return the updated system. return system